A Novel Nonlinear Neural Network Ensemble Model Using K-PLSR for Rainfall Forecasting
نویسندگان
چکیده
In this paper, a novel hybrid Radial Basis Function Neural Network (RBF–NN) ensemble model is proposed for rainfall forecasting based on Kernel Partial Least Squares Regression (K–PLSR). In the process of ensemble modeling, the first stage the initial data set is divided into different training sets by used Bagging and Boosting technology. In the second stage, these training sets are input to the RBF–NN models of different kernel function, and then various single RBF–NN predictors are produced. Finally, K–PLSR is used for ensemble of the prediction purpose. Our findings reveal that the K–PLSR ensemble model can be used as an alternative forecasting tool for a Meteorological application in achieving greater forecasting accuracy.
منابع مشابه
An Effective Hybrid Semi-Parametric Regression Strategy for Rainfall Forecasting Combining Linear and Nonlinear Regression
Rainfall forecasting is an important research topic in disaster prevention and reduction. The characteristic of rainfall involves a rather complex systematic dynamics under the influence of different meteorological factors, including linear and nonlinear pattern. Recently, many approaches to improve forecasting accuracy have been introduced. Artificial neural network (ANN), which performs a non...
متن کاملPrediction of monthly rainfall using artificial neural network mixture approach, Case Study: Torbat-e Heydariyeh
Rainfall is one of the most important elements of water cycle used in evaluating climate conditions of each region. Long-term forecast of rainfall for arid and semi-arid regions is very important for managing and planning of water resources. To forecast appropriately, accurate data regarding humidity, temperature, pressure, wind speed etc. is required.This article is analytical and its database...
متن کاملRainfall time series forecasting based on Modular RBF Neural Network model coupled with SSA and PLS
Accurate forecast of rainfall has been one of the most important issues in hydrological research. Due to rainfall forecasting involves a rather complex nonlinear data pattern; there are lots of novel forecasting approaches to improve the forecasting accuracy. In this paper, a new approach using the Modular Radial Basis Function Neural Network (M–RBF–NN) technique is presented to improve rainfal...
متن کاملWhich Methodology is Better for Combining Linear and Nonlinear Models for Time Series Forecasting?
Both theoretical and empirical findings have suggested that combining different models can be an effective way to improve the predictive performance of each individual model. It is especially occurred when the models in the ensemble are quite different. Hybrid techniques that decompose a time series into its linear and nonlinear components are one of the most important kinds of the hybrid model...
متن کاملA Novel Feature Extraction-based Selective & Nonlinear Neural Network Ensemble Model for Economic Forecasting
In this study, a novel selective & nonlinear neural network ensemble model, i.e. NSNNEIPCABag, is proposed for economic forecasting. In this model, some different training subsets are first generated by bagging algorithm. Then the feature extraction technique, improved principal component analysis (IPCA), and then the IPCA approach is also used to extract their data features to train individual...
متن کامل